RAPIX Logic Programming Guide

Version 15, 1 June 2021

COPYRIGHT © OZUNO HOLDINGS 2021 1

u A W N R

Contents

[DToTolU1a 0 =T a1 ol 1) o] oS 5
T 1A ge e [ot o] oINPT PP PRSPPSO 6
HOW Tt WWOTKS. ettt st she e sae e et et e e s b e sbeesaeesaresmneebeenns 7
(01 g=) i o T o <4 Tl PP PP TP PPPPPPPUPPNE 8
5.1 AddING LOGIC IMOTUIESoeiiiiiie ittt e e st e e s st e e s sbeaeessbeeeessntaeessanes 8
5.2 Y T (011l] o TUT o LSRR 9
5.3 Pi¥e Lo [T aY=d € [o] o F-] I Yo =TSR 10
5.4 WIItING LOZIC COUR ..untiiiiiiiiee ittt ettt ettt e st e e e s bt e e s e bte e e s sbeeeessbteaessnraeessanes 10
54.1 COdE COMMENTES....eiiiiiiiiie ettt ettt ettt ettt e site e s bt e e sabeesbeessateesabaeesabeesabeesseeesabeeenns 10
5.4.2 KeYboard ShOrt-CULS........uiiiiiiiie e e e e e e e e s are e e s sareeas 10
5.4.3 Code SNIPPEL GENEIALONvvieeeeiiieecciieee et e e e et e e e ectte e e e eette e e s etteeesebtaeesestaeeseseeeaeannes 11
5.5 (00T 0] o1 11T =SSP 11
5.6 LI 101 £ TSP 11
LANGUAEE REFEIENCE ..ttt e e e e st be e e e st e e e e s abeeeesabeeeeenabeeesennreeas 11
6.1 LCT=T =T o | O T TP VPP PROPROPR 11
6.2 MOAUIE ENVIFONMENT ...ttt ettt st ettt e st sbe e st sate et e e sbeesaeesane e 12
6.3 RAPIX ENTITIES ettt s st e s s e s e 12
6.3.1 74 o T PPN 12
6.3.2 o= =TT PP 16
6.3.3 DT S o -SSR 17
6.34 Xi OPerating PrOPEITieS....uuuiiiieiiiiiiiiiiiiiiiiiererereriuriererererererraere———————————————————————————————————.. 19
6.4 RAPIX EXEENSIONS. .. etiiiiiiiiiiiiiiic ittt saa e e san e e saneesans 21
6.5 (DL 1YL PSPPI 21
6.5.1 HOW E WOTKS .ttt s s e s s 22
6.5.2 LIMItAIONS. . 22
6.6 LI 1= £ USSP 23
6.6.1 o o 01T o [T 23
6.6.2 MEENOAS ...ttt s e st ee e re e nreesane e 23
6.6.3 L0 = TR RN 23
6.6.4 oY .01 o [P 24
6.7 UDP ClIENT .ttt ettt ettt e s et et e st e s bt e e sar e e s beeesmeeesabeeesnseesareesneeesareesane 25
6.7.1 L o 01T o [T RN 25
6.7.2 MEENOAS ...ttt s e st e e e b e saeesane e 25
6.7.3 oY .01 o [UPP 25
6.8 B2 4] = @ T o U 27

COPYRIGHT © OZUNO HOLDINGS 2021 2

6.8.1 Lo o 01T 1 TN 27
6.8.2 IMEENOAS ...ttt st sttt e s b st st e bt e s b e saeesane e 27
6.8.3 T L0 Y o1 [T UR SR 27
6.9 YT 11 o o T TPV PUPRTOPRT PR 28
6.9.1 o o 01T TN 28
6.9.2 IMEENOAS ...ttt sttt b e s b st st e et e bt e saeesane e 28
6.9.3 CONSTANTS .ot 28
6.9.4 {67 0151 4 (U [o | PP P PPN 29
6.9.5 T L0 Y o1 [T UR SR 29
6.10 Other Properties and Methods...........c.uuiiieiiii i e e aaee e 31
6.10.1 Date @Nnd TiME ...ceiieeiieiieeiie ettt sttt ettt e she e st st et b e be e be e sae e et e entean 31
6.10.2 CONNECTIVITY trttiiiiiiiiiiiieeee ettt e e e s s ettt e e e e e e s s bbbt e e e eeesssasssbseaeaeeesesasnnrnes 31

2 05 T I Y -4 ol |V, o T 11 PP 31
6.10.4 LeVElI CONVEISION ..eiiiiiiiiieeiee ettt e stte et e st e et e sbe e e sabe e sabeesbteesabeessbbeesabeesabaeesabeeense 31
B.10.5 OtNEI ittt st et b e sae e saeeeare s 32
B.11 CONSTANTS ittt ra e e 32
A = T o o - (o1 [T PSPPSR 33
7.1 CommMENES AN NAMINEG c...viiiiiiiiie e e e e rre e e e b e e e s sabee e e esabaeesesabeeesennseeas 33
7.2 MOAUIE PEIIOM ...ttt ettt ettt e bt e sbt e sae e sabeesbeesbeesbeesanenas 33
7.3 Performing Actions 0N ChaNnGES........cocccuiiieeiiiii ettt e ree e e abe e e e e areeas 33
N <Y oYU =41 oY= SRR R 34
S B Y0 0] o LTSRS 35
9.1 P4 o] =T oY =44 L USRIt 35
9.2 Z0oNE LeVel AdJUSTMENTeiiii ettt e et e e e e tte e e e ebte e e e ebteeeeebraeeeeanes 35
9.3 ZONE TFACKING ... utteeeieieiee ettt ettt e e e e et e e e et e e e s ebte e e s ebteeeeebtaeesessseaeaseseaesastesaesassanaeannes 36
9.4 Conditional Zone Trackingcccveeei i see e s s e e e e areeas 36
9.5 (oY =4 Tor=1 @ 1 SRR 36
9.6 [T =4Tor= 1 I A AV LTSRN 36
9.7 oY = Tor= 1 1 V[PSRN 36
9.8 AdJAcent Area CONIOL........uuiiiiii et e e e e e e e rab e e e e e e e s ssnraseeeeeeeeesnnnnnnns 37
9.9 INTEIALISATION. ..ttt s ettt s s sttt e r e reesnne e 38
9.9.1 GlODAl DECIArAtioN .eoueeeiieiiieieeeeee et s 38
9.9.2 RUN ONCE MOTUIE ... s e e 38
9.9.3 USING ISFIFSTRUNueitiiiiiiii e aensasasannnnnnnannnas 38
9.10 USING DAte @Nd TiMIE ...uuuiiiieeeee ettt e e e s ettt e e e e e e e etrre e e e e e e e e s eanbrsaeeeeesessnntasseeeeeeesannseeneeeas 39
1o 2000 5 R T o TN} D - 1Y PRt 39

COPYRIGHT © OZUNO HOLDINGS 2021 3

9.10.2 DAY OF WEEBK .o ettt ettt e et e et e e e e bte e e e e bte e e e ebteeessabteaeesntaeeesanes 39

1o 20O T 0 1= Vo =Y oSOt 39
9.10.4 SUNTISE/SUNSET .evviiiiiiiiieiettie e ettt e ettt e e e sttt e e e s bt e e e s ettt e e s sbaeeessbbeesssbbeesssbbeesssasbaseesnes 39
9.11 Enabling / Disabling LOGIC MOAUIESc.cccueiiviiiiieciecie ettt ettt 40
9.11.1 EXCIUAEA MOTUIES ..ottt st e s 40
9.11.2 Enable / Disable METROASooveeveeiiiiee ettt e e e e s s s saaraeeeeeessans 40
9.11.3 Conditional OPeration......cccueiiiiciiie ittt e e s e e s sbae e e s sreeeeennes 40
1 Y o T =T Tol =l o V7=) £ USSP 42
9.13 Handling Error CONIitioNS.......ciiiciiiiiiiiiie ettt ettt e e s saee e e s e e e e ssabaeeesnnsaeaeeas 44

COPYRIGHT © OZUNO HOLDINGS 2021 4

2 Document History

Version Date Changes
12 26/2/2021 | Initial release
13 16/4/2021 | Added document history
Added serial port methods
Added Level Conversion methods
Added examples about code initialisation
Renamed top-level item in module tree
14 5/5/2021 Fixed typos in serial port section.
15 1/6/2021 Clarified Zone state property.
Added examples.

COPYRIGHT © OZUNO HOLDINGS 2021 5

3 Introduction

The templates used in RAPIX Xi Devices provide the ability to customise the behaviour of a RAPIX
system. Sometimes, however, there are requirements that are beyond the scope of these
templates, and this is where the RAPIX Logic is useful.

RAPIX Logic provides a general-purpose scripting environment that is customised to the needs of
building automation. It is based on one of the most popular programming languages, CH.

The C# language is not discussed in this document. There are myriad sources on-line that can be
used for learning how to program with C#. A good starting point for learning C# is
https://www.w3schools.com/cs/. Only a very small sub-set of the C# language will typically be
required for RAPIX Logic.

RAPIX Logic should only be used by people with
experience with the RAPIX Lighting Control
System and with C# programming.

Use at your own risk.

COPYRIGHT © OZUNO HOLDINGS 2021 6

https://www.w3schools.com/cs/

4 How it Works

The user can create one or more "modules" of logic. Each module is executed at a rate selected by
the user, from several times per second, up to every hour or more. The modules are completely
independent of each other.

The Logic code has access to various aspects of the RAPIX system that can be used to make
decisions. These include:

e Zone levels, colours, error conditions and occupancy status
e Scene state
e XiFlag state
e Xi Operating Property values
e System status
o Date/time, sunrise and sunset time
o Ethernet connected
o Modbus connected

The Logic code also has access to various aspects of the RAPIX system that can controlled. These
include:

e Zone levels and colours
e Scene state
e XiFlag state
e Xi Operating Property values
e System functions
o UDP sockets
o Logging

There are two types of logic code:

e Modules: These contain the logic code which is executed periodically.
e Global code: This provides a mechanism for defining global (shared) variables and methods
which are used by the modules. Most basic logic code will not require global code.

The user generated Logic Code is compiled and transferred to the Zone Controller. The Master Zone
controller executes the modules at a rate selected by the user.

COPYRIGHT © OZUNO HOLDINGS 2021 7

5 Creating Logic
5.1 Adding Logic Modules

Select the logic tab from the left-panel:

The tree shows the user's Logic code, sorted into Global code and Modules:

Modules Q, Search

|—Global
I—MDdU|E5

To add Logic code, select the Modules node, and click on the Add button:

|
:]Add :]Add Group Remove

Select the new module in the tree and select its properties:

e Name

e When to start running it (Delay after logic starts)

e How often to run it (Run Period)

e Whether the logic should be initially enabled (this can be changed after the logic starts if

needed)
Logic Properties
[Glote Name: ‘NEW Script 1 |
- Standard
include [Catchup on Power-up

[Run pericdically Delay after lagic starts: |2 seconds Period: |05 second v Start Enabled

COPYRIGHT © OZUNO HOLDINGS 2021 8

There are options for when to run the logic module:

Option Description

Don't run automatically | The module will not run until it has been requested. Once enabled (by
another module), it will run once.

Run once The module will run once at a selected time after the logic starts.

Run periodically The module will run at a selected time after the logic starts, then at a
selected period (interval). This is the "normal" operation.

5.2 Module Groups

Modules can be put into groups for convenience.

To add a Logic Group, select the Global or Modules node (or another Group), and click on the Add
Group button:

|
:] Add :] Add Group Remove

Select the new group in the tree and give it a name:

Modules Q Search Properties
rGIobaI Mame: |Floor 1 Logic
é—l\-’lodules |

Floor 1 Logic

Logic Modules can be added under a group by selecting the group node, then clicking on the Add
button.

The result can be a hierarchy of any structure to suit the needs of the project.

Modules Q, Search

rGIDbaI

é—Modules
FIu:uor'I Legic
Flnor?_ Logic
- Whole Building
& Floor 2 Legic

Example of Logic Grouping

COPYRIGHT © OZUNO HOLDINGS 2021 9

5.3 Adding Global Code
Global code is only required when implementing more complex features. To add global code, select
the Global node, and click on the Add button:

I
:] Add :] Add Group Remowve

Give the new global code item a name that describes its purpose:

Modules Q, Search Properties
I?)—Global Mame: |Variab|es
l—ModuIes

5.4 Writing Logic Code
Logic Code can be typed directly into the Script editor. The code will be syntax highlighted as it is
entered:

Script i |
1 // Make the state of Zone "SA 1@, 11" track the state of Zone "SA 8, 9"
2 if (Zones["SA 1@, 11"].State != Zones["SA 8, 9"].S5tate)
R
4 Zones["SA 1@, 11"].State = Zones["SA 8, 9"].State;
5 }

5.4.1 Code Comments

It is always good practice to put as many comments in code as possible. Comments at the start of a
module will be used as a description of the module in the project summary. All comments up until
the first line that is not a comment (i.e. is a blank line or code) will be included.

5.4.2 Keyboard Short-cuts
Keyboard short-cuts that can be used in the logic editor are shown in the table below.

Key Combination Function

CTRL + SPACE Show code snippet generator (see below)
CTRL+A Select All text

CTRL+C Copy selected text

CTRL+D Duplicate current line

CTRL+L Delete current line

CTRL+T Toggle (swap) line with the one above
CTRL+V Paste

CTRL+ X Cut

CTRL+2Z Undo

COPYRIGHT © OZUNO HOLDINGS 2021 10

5.4.3 Code Snippet Generator
For quickly inserting code "snippets", select the position in the code editor where it is to be entered
and click on CTRL + SPACE. The Logic snippet editor will appear:

Logic n
Logic
Generate a snippet of code
Category Zone Name Function
|Zcmes ‘F\UUH LEDs |\5Any0n

Result
|Znnes["F|nm LEDs"].IsAnyOn |

Select the code category and other options as required. The resulting code will be displayed. When
finished, click on OK. The code will be inserted in the code editor.

5.5 Compiling
When the Logic is complete, click on the Compile button. If all is correct, the message "Compiled OK"
will be seen in the output window:

Output

Compiled OK

Any errors will be displayed in the Output window. You will need to check the listed module and line
number to determine the cause. Please note that the reported error position within a line may not
be correct due to the pre-processing of the logic code.

5.6 Transferring

Once the Logic has been successfully compiled, transfer the project to the Zone Controllers. The
Zone Controllers will re-boot to load the logic. The logic will start running once the DALI Line scans
are complete.

6 Language Reference

6.1 General
The RAPIX Logic uses the .Net 3.5 framework. More recent language features are not supported.

The RAPIX Logic code is run in a "sand-boxed" environment for security. A result of this is that many
standard name-spaces are not available.

COPYRIGHT © OZUNO HOLDINGS 2021 11

6.2 Module Environment
The code in the logic Modules or Global code can access anything in the Global code.

The code in the logic Modules can use the RAPIX "context", which is a structure named "Rapix". This
provides the interface to the RAPIX Zones and other entities.

Note that the logic code is pre-processed to insert the class name "Rapix" where needed. This
eliminates the need for a lot of text. The following are equivalent:

e Rapix.Zones|[3]
e 7Zones|[3]

6.3 RAPIX Entities

6.3.1 Zones

6.3.1.1 Zone Class

The "Zone" class provides access to the RAPIX Zones. There should be no need to create these
objects directly. The context will provide them for the Logic to use through the Rapix.Zones
dictionary (see below).

6.3.1.1.1 Properties
The Zone class properties are shown below. The less commonly used properties are shown in

Property Name Type Settable | Description

Averagelevel int No The average level in the zone

Error bool No Whether there is an error in the zone

FadeTime float Yes The zone fade time (in seconds)

IsAIIOff bool No Whether everything in the zone is off

IsAllOn bool No Whether everything in the zone is on

IsAnyOff bool No Whether anything in the zone is off

IsAnyOn bool No Whether anything in the zone is on

IsDataValid bool No Whether the zone information is valid

IsFading bool No Whether the zone is fading

IsOccupied bool No Whether the zone is occupied (i.e. a sensor has
detected motion)

IsOff bool No Whether the zone is off (same as ISAIIOff)

IsOn bool No Whether the zone is on (same as IsAnyOn)

Level int Yes The zone level (see below)

LevelsAreAllEqual bool No Whether the level of everything in the zone is the
same

MinLevel int No The minimum level in the zone

MaxLevel int No The maximum level in the zone

Name string No The name

Number int No The zone number (id)

State bool Yes Whether the zone is on (same as IsAnyOn)

Tag int Yes A value that can be used for any purpose

TargetLevel int No The level that the zone is fading towards (if
fading)

TargetLevelsAreAllEqual | bool No Whether the target level of everything in the
zone is the same

COPYRIGHT © OZUNO HOLDINGS 2021 12

Zone levels use the DALI level, 0 — 254. They can also be referred to in %, which will be converted to
a DALI Level during the pre-process stage. For example, the following are equivalent:

e 7Zones["Office 1"].Level = 50%;
e 7Zones["Office 1"].Level = 127;

Reading the Zone.Level property value gives the same value as the TargetLevel. This is:

e The maximum level in the Zone if the Zone is not fading; or
e The maximum target level in the Zone if the Zone level is fading.

Setting the Zone.Level property is the same as Zone.FadeTolLevel() with a fade time of 0.

The Zone.Averagelevel property can be used to get an indication of the "level" of a Zone, but it may
not give the expected value if:

e Devices have non-standard min/max settings; or

e Devices are fading from one level to another; or

e There are relay devices in the Zone; or

o Different parts of the Zone have been set to different levels.

For this reason, it is recommended that Zone.Level be used for most purposes.

6.3.1.1.2 Zone Colours
The properties related to Zone colour are:

Property Name Type Settable Description

Color long Yes The Zone colour

ColorRGB int No The Zone colour in RGB

ColorRGBWAF long No The Zone colour in RGBWAF

ColorTemp int No The Zone colour temperature (in Kelvin)
ColorType enum No The Zone colour type

ColorXxy long No The Zone colour in XY

HasColor bool No Whether the zone has colour devices
TargetColor long No The Zone target colour

TargetColorRGB int No The Zone target colour in RGB
TargetColorRGBWAF | long No The Zone target colour in RGBWAF
TargetColorTemp int No The Zone target colour temperature (in Kelvin)
TargetColorXY long No The Zone target colour in XY

Zone Colours are long int values as shown in the table below.

Colour Byte
Type 7 6 5 4 3 2 1 0
Colour Temp - 1 - - - - MSB LSB
RGBWAF - 3 Red Green Blue White Amber Free
XY - 4 - - X MSB X LSB Y MSB Y LSB
COPYRIGHT © OZUNO HOLDINGS 2021 13

Colour Temperature is in Kelvin.

RGB values are an int value as shown below:

Colour Byte
Type 3 2 1 0
RGB - Red Green Blue

All colour components have values in the range 0 to 254. The value 255 (0xFF) is "MASK", meaning
no change.

Examples:

e Colour Temperature, 3000K= 0x0001000000000BRB8
e Colour Temperature, 5000K = 0x0001000000001388
e Colour Temperature, Mask= 0x000100000000FFFF

e RGB(WAF)Red = 0x0003FE0000000000
e RGB(WAF) White = 0x0003FEFEFEFE0000
e RGB(WAF) MASK = 0x0003FFFFFFFFFFFF

The Zone colour type is an enumeration:

public enum DaliColorType
{

ColorTemperature = 1,
RGB = 3,
XY = 4,

None = OXxFF

6.3.1.1.3 Methods
The Zone class methods are:

Method Description

FadeTolevel(int level, float fadeTime) Fade the zone to the new level
Off() Turn the zone off

on() Turn the zone on

StopFade() Stop the zone fading

COPYRIGHT © OZUNO HOLDINGS 2021 14

The methods related to Zone colour are:

Method

Description

FadeToColor(long color, float fadeTime)

Fade the zone to a new colour

FadeToColorRGB(int color, float fadeTime)

Fade the zone to a new colour

FadeToColorRGBWAF(long color, float fadeTime)

Fade the zone to a new colour

FadeToColorTemp(int color, float fadeTime)

Fade the zone to a new colour

FadeToColorXY(int color, float fadeTime)

Fade the zone to a new colour

FadeToLevelAndColor(int level, long color, float
fadeTime)

Fade the zone to a new level and colour

FadeTolLevelAndColorRGB(int level, int color, float
fadeTime)

Fade the zone to a new level and colour

FadeTolevelAndColorRGBWAF(int level, long color,
float fadeTime)

Fade the zone to a new level and colour

FadeTolevelAndColorTemp(int level, int color, float
fadeTime)

Fade the zone to a new level and colour

FadeToLevelAndColorXY(int level, int color, float
fadeTime)

Fade the zone to a new level and colour

6.3.1.2 Zones Dictionary

The RAPIX Zones are accessible from the Rapix.Zones dictionaries.

The Zones can be indexed (looked-up) by id or name.

6.3.1.3 Examples

To perform an action if the level of a Zone called "Office 1" is more than 50%:

if (Zones["Office 1"].Level > 50%)

{

To turn on a Zone called "Office 1":

Zones ["Office 1"]1.0n{();

To fade a Zone called "Lobby" to colour temperature 3000K (without changing the level) over 30

seconds:

Zones ["Lobby"].FadeToColorTemp (3000, 30);

To fade a Zone called "Lobby" to level 100%, blue (RGB #0000FE) over 1 second:

Zones |["Lobby"] .FadeToLevelAndColorRGB (100%, 0xO00O0OFE, 1);

COPYRIGHT © OZUNO HOLDINGS 2021 15

6.3.2 Scenes

6.3.2.1 Scene Class

The "Scene" class provides access to the RAPIX Scenes. There should be no need to create these
objects directly. The context will provide them for the Logic to use through the Rapix.Scenes
dictionary (see below).

6.3.2.1.1 Properties
The Scene class properties are:

Property Name Type Settable Description

IsSet bool No Whether the scene is set

Name string No The name

Number int No The scene number (id)

Tag long Yes A value that can be used for any purpose

6.3.2.1.2 Methods
The Scene class methods are:

Method Description
Off() Turn the scene off
Set() Set the scene

6.3.2.2 Scenes Dictionary
The RAPIX Scenes are accessible from the Rapix.Scenes dictionaries.

The Scenes can be indexed (looked-up) by id or name.

6.3.2.3 Examples
To perform an action if the level of a Scene called "Morning" is set:

if (Scenes["Morning"].IsSet)

{

To set a scene called "Morning":

Scenes ["Morning"].Set () ;

COPYRIGHT © OZUNO HOLDINGS 2021 16

6.3.3 XiFlags

6.3.3.1 XiFlagGroup Class

The "XiFlagGroup" class provides access to the RAPIX Xi Flag Groups. There should be no need to
create these objects directly. The context will provide them for the Logic to use through the
Rapix.XiFlagGroups dictionary (see below).

6.3.3.1.1 Properties
The XiFlagGroup class properties are:

Property Name Type Settable Description
FlagGroupNumber Int No The Flag Group number
Flags Dictionary<int, XiFlag> | No The flags in the group
Name string No The name

6.3.3.1.2 Methods
There are no XiFlagGroup methods.

6.3.3.2 XiFlagGroups Dictionary
The RAPIX Zones are accessible from the Rapix.FlagGroups dictionaries.

The Xi Flag Groups can be indexed (looked-up) by id or name.

6.3.3.3 XiFlag Class

The "XiFlag" class provides access to the RAPIX Xi Flags. There should be no need to create these
objects directly. The context will provide them for the Logic to use through the XiFlagGroup.Flags
dictionary (see below).

6.3.3.3.1 Properties
The XiFlag class properties are:

Property Name Type Settable Description

FlagGroup XiFlagGroup No The Flag Group

FlagNumber int No The flag number

IsClear bool Yes Whether the flag is clear (i.e. not set)

IsSet bool Yes Whether the flag is set (same as State)

Name string No The name

State bool Yes Whether the flag is set

Tag long Yes A value that can be used for any purpose
COPYRIGHT © OZUNO HOLDINGS 2021 17

6.3.3.3.2 Methods
The XiFlag methods are:

Method Description
Clear() Clear the flag
Set() Set the flag

6.3.3.4 Flags Dictionary
The RAPIX Xi Flags are accessible from the XiFlagGroup.Flags dictionaries.

The Xi Flags can be indexed (looked-up) by id or name.

6.3.3.5 Examples
To perform an action if Flag Group "Sensors", Flag "Meeting Room" is set:

if (FlagGroups|["Sensors"].Flags["Meeting Room"].State)
{

To set Flag Group "Sensors", Flag "Meeting Room":

FlagGroups["Sensors"].Flags["Meeting Room"].Set ()

The following are all equivalent for checking that a Flag is set:

if (FlagGroups[l].Flags[2].State)..
if (FlagGroups[l].Flags[2].State == SET)..
if (FlagGroups[l].Flags[2].IsSet)..

The following are all equivalent for checking that a Flag is clear:

if (!FlagGroups[l].Flags[2].State)..
if (FlagGroups[l].Flags[2].State == CLEAR)..
if (FlagGroups[l].Flags[2].IsClear)..

COPYRIGHT © OZUNO HOLDINGS 2021 18

6.3.4 Xi Operating Properties

6.3.4.1 XiOpProp Class

The "XiOpProp" class provides access to the RAPIX Xi Operating Properties. There should be no need
to create these objects directly. The context will provide them for the Logic to use through the
Rapix.OpProps dictionary (see below).

6.3.4.1.1 Properties
The XiOpProp class properties are:

Property Name Type Settable | Description

Name string No The name

OpPropNumber int No The Operating property number

Value int Yes The current value

Values List<XiOpPropValue>() | No A list of named values

Tag long Yes A value that can be used for any
purpose

6.3.4.1.2 Methods
The XiOpProp class methods are:

Method Description

bool IsValue(int number) Whether the Operating Property is this value number
bool IsValue(string name) Whether the Operating Property is this value name
void SetValue(int number) Set the Operating Property to this value number

void SetValue(string name) Set the Operating Property to this value name

6.3.4.2 XiOpProps Dictionary
The RAPIX Xi Operating Properties are accessible from the Rapix.OpProps dictionaries.

The Xi Operating Properties can be indexed (looked-up) by id or name.

6.3.4.3 XiOpPropValue Class

The " XiOpPropValue" class provides access to the RAPIX Xi Operating Property. There should be no
need to create these objects directly. The context will provide them for the Logic to use through the
XiOpProps.Values dictionary (see below).

Note: it is rarely necessary to use the XiOpPropValue objects.

6.3.4.3.1 Properties
The XiOpPropValue class properties are:

Property Name | Type Settable Description

Name string No The name

OpProp XiOpProp No The parent operating property
Value int No The value

COPYRIGHT © OZUNO HOLDINGS 2021 19

6.3.4.3.2 Methods
The XiOpPropValue class has no methods.

6.3.4.4 XiOpPropValues Dictionary
The RAPIX Xi Operating Property Values are accessible from the XiOpProp.Values dictionaries.

The Xi Operating Property values can be indexed (looked-up) by id or name.

6.3.4.5 Examples
To perform an action if the value of an Xi Operating property "Building" is "Work Hours":

if (OpProps["Building"].IsValue ("Work Hours"))
{

To perform an action if the value of an Xi Operating property "Building" is not "After Hours":

if (!OpProps["Building"].IsValue ("After Hours"))
{

To set the value of an Xi Operating property "Building" to "Work Hours":

OpProps["Building"].SetValue ("Work Hours");

COPYRIGHT © OZUNO HOLDINGS 2021 20

6.4 RAPIX Extensions
RAPIX Logic has a series of methods designed to simplify the common coding requirements for
building automation.

The following methods are used to allow code to be executed only when something changes:

e HasChanged
e NowTrue
o NowtFalse
e StayedTrue
e StayedFalse

To have some script execute only when a value changes, the code would be:

if (HasChanged (value))
{

To have some script execute only when a value changes from false to true, the code would be:

if (NowTrue (value))

{

To have some script execute only when a value has stayed true for a duration, the code would be:

if (StayedTrue (value, duration))

{

6.5 Delays
Delays can be used in the code to pause between sections of the code. There are several methods
provided for this:

e Delay
e DelayWhile
e DelayUntil

For a fixed delay of 5 seconds:

Delay (5);

COPYRIGHT © OZUNO HOLDINGS 2021 21

To delay for an indeterminate period while a (Boolean) value or expression is true:

DelayWhile (value) ;

To delay for an indeterminate period until a value is true:

DelayUntil (value) ;

6.5.1 How it works
Delays are a convenient coding short-cut to avoid the need for timers, threads or asynchronous
code.

When there is a delay in a module, the module is effectively split into two parts that are run
separately. The process is essentially:

Run first part of module
Exit

Wait

Run next part of module

PwNPR

6.5.2 Limitations

When one or more delays are used, the two (or more) parts of the module are run completely
independently of each other. This means that any state information from one part of the module is
not available for later parts of the module.

For example, this will not work because the value of "level" is lost:

int level = 10;

zZzones[3] .Level = level;

Delay (2) ; // Code exits here, then comes back later.
level++; // Error — the value of level is no longer 10.
Zzones[3] .Level = level;

For the same reason it is not possible to use delays within code blocks:

e for, foreach, while or do loops

o if() {.}

Refer to the examples for alternatives to loops with delays.

Delays cannot be used in global code.

COPYRIGHT © OZUNO HOLDINGS 2021 22

6.6 Timers
The RapixTimer class is useful for timing events, or for implementing delays. The methods and
properties are shown in the tables below.

6.6.1 Properties

Property Name Type Settable | Description

Running bool No True if the timer is running

Time int No How long (in seconds) the timer has been running
TimeFloat float No How long (in seconds) the timer has been running
TimeSpan TimeSpan No How long the timer has been running

6.6.2 Methods

Method Description
RapixTimer() Constructor
Start() Start (or re-start) the timer running
Stop() Stop the timer
6.6.3 Usage

A timer needs to be declared in a global code so that it exists independently of the logic modules. It
should be instantiated in the same place.

The RapixTimer object will maintain the correct duration even in the system clock is adjusted
forward or back (for example at the start or end of Daylight Saving).

The timer value will roll-over after 24 days. It should only be used for timing periods less than this.
For longer periods, use a DateTime structure to record the start time and subtract this from the
current time:

DateTime period = Now.Subtract (start time);

COPYRIGHT © OZUNO HOLDINGS 2021 23

6.6.4 Examples
The code below turns on a Zone 60 seconds after an Operating Property changes.

In global code:

RapixTimer EventTimer = new RapixTimer () ;

In module 1:

if (NowTrue (OpProps["Building Mode"].IsValue ("Peak hours")))
{

EventTimer.Start () ;

In module 2:

if (EventTimer.Time >= 60)

{
EventTimer.Stop () ;

Zzones["Floor 1 / Line 1"].FadeToLevel (100%, 4);

COPYRIGHT © OZUNO HOLDINGS 2021 24

6.7 UDP Client

6.7.1 Properties
The UdpClient class properties are:

Property Name Type Settable

Description

IsConnected bool No

Whether the client has connected

6.7.2 Methods
The UdpClient methods are:

Method

Description

Close()

Close the connection

Connect(string hostName, int port)

Connect to the host at the specified port

byte[] ReadBytes()

Read bytes from the socket

string ReadAsciiString()

Read ASCII encoded bytes from the socket and
convert to string

string ReadUtf8String()

Read UTF-8 encoded bytes from the socket and
convert to string

SendBytes(byte[] bytes)

Send a message

SendAsciiString(string message)

Send a string as ASCIl encoded bytes

SendUtf8String(string message)

Send a string as UTF-8 encoded bytes

UdpClient()

Constructor

UdpClient(int port)

Constructor. "port" is port number for receiving
messages.

6.7.3 Example
6.7.3.1 Sending Messages via UDP

UDP messages can be sent from RAPIX Logic. Here is an example of sending a UDP message when a

Zone occupancy changes:

if (HasChanged (Zones["Relay 1"].IsOccupied))

{

UdpClient MyUdpClient = new UdpClient();
MyUdpClient.Connect ("192.168.200.29", 55056);
MyUdpClient.SendAsciiString (Zones["Test"].IsOccupied ? "Zone

Occupied" : "Zone Vacant");

MyUdpClient.Close () ;

COPYRIGHT © OZUNO HOLDINGS 2021

25

6.7.3.2 Receiving messages via UDP
This example opens a UDP connection to another device then waits for messages containing "on" or
"off" and sets the zone state accordingly.

In the global code:

UdpClient myUdpClient;

In the logic module (which runs every 0.5 seconds):

if (myUdpClient == null)

{
myUdpClient = new UdpClient () ;
myUdpClient.Connect ("192.168.200.29", 55056);
myUdpClient.SendAsciiString ("Hello");

if (!myUdpClient.Connected)
{

return;

string data = myUdpClient.ReadAsciiString();
if (string.IsNullOrEmpty (data))
{

return;

if (data.ToLower () .StartsWith ("on"))

Zones["Test"].On () ;

}
else if (data.TolLower () .StartsWith ("off"))

{
Zzones["Test"].0ff (),

COPYRIGHT © OZUNO HOLDINGS 2021 26

6.8 TCP/IP Client

6.8.1 Properties
The TcpClient class properties are:

Property Name Type Settable Description
IsConnected bool No Whether the client has connected

6.8.2 Methods
The TcpClient methods are:

Method Description

Close() Close the connection

Connect(string hostName, int port) Connect to the host at the specified port

byte[] ReadBytes() Read bytes from the socket

string ReadAsciiString() Read ASCIl encoded bytes from the socket and
convert to string

string ReadUtf8String() Read UTF-8 encoded bytes from the socket and
convert to string

SendBytes(byte[] bytes) Send a message

SendAsciiString(string message) Send a string as ASCIl encoded bytes

SendUtf8String(string message) Send a string as UTF-8 encoded bytes

TcpClient() Constructor

6.8.3 Example

6.8.3.1 Sending Messages via TCP/IP
TCP/IP messages can be sent from RAPIX Logic. Here is an example of sending a TCP message when a
Zone occupancy changes:

if (HasChanged (Zones["Room 1"].IsOccupied))
{
TcpClient MyTcpClient = new TcpClient();
if (MyTcpClient.Connect("192.168.200.29", 55056))

{
MyTcpClient.SendAsciiString (Zones|["Test"].IsOccupied ?
"Zone Occupied"
"Zone Vacant");
}
else
{
LogMessage ("Connect to 192.168.200.29 failed");
}

MyTcpClient.Close();

COPYRIGHT © OZUNO HOLDINGS 2021 27

6.9 Serial Port
For complete details of using the serial port, refer to "Zone Controller Serial Port Interface"
Application Note available on the Ozuno web site.

6.9.1 Properties
The SerialPort class properties are:

Property Name Type Settable Description

IsOpen bool No Whether the serial port is open

6.9.2 Methods
The SerialPort methods are:

Method Description

void Close() Close the serial port

bool Open() Open the serial port

string ReadAsciilLineg() Read an ASCII string that is terminated by a

carriage return and/or end of line (not including
the terminators).

bool SendAsciiString(string message) Send an ASCII string

SerialPort(int comPort, int baudRate, int Serial port constructor (see below)
parity, int stopBits, bool xonXoff)

6.9.3 Constants
The SerialPort class constants are:

Constant Name Type Value Description

PARITY_NONE int 0 The serial port uses no parity
PARITY_ODD int 1 The serial port uses odd parity
PARITY_EVEN int 2 The serial port uses even parity
PARITY_MARK int 3 The serial port uses mark parity
PARITY_SPACE int 4 The serial port uses space parity
STOP_BITS_ONE int 0 The serial port uses one stop bit

COPYRIGHT © OZUNO HOLDINGS 2021 28

STOP_BITS_ONE_POINT_FIVE int 1 The serial port uses 1.5 stop bits

STOP_BITS_TWO int 2 The serial port uses two stop bits

6.9.4 Constructor
The serial port constructor is:

SerialPort (int comPort, int baudRate, int parity, int
stopBits, bool xonXoff)

The Com port value is always 1. This is the serial port on the bottom of the RAPIX Zone Controller.

The baud rate, parity, stop bits and XON/XOFF settings need to match the device that is being
communicated with.

6.9.5 Example

6.9.5.1 Sending and Receiving Messages via Serial
Serial port messages can be sent from RAPIX Logic. The example below sends a serial message when

a Zone occupancy changes. It will also accept commands "on" and "off" from the serial port and
control the Zone state.

Global code:

SerialPort MySerialPort;

In the logic module (which runs every 0.5 seconds):

// Make sure that the serial port exists and is open.
if (MySerialPort == null)
{
MySerialPort = new SerialPort(l, 9600,
SerialPort.PARITY NONE, SerialPort.STOP BITS ONE, false);
MySerialPort.Open () ;
}

// If the Zone state has changed, send an update.
if (HasChanged (Zones["Al1l"].State))
{
if (Zones["All"].State)
{
MySerialPort.SendAsciiString("Zone is on\r\n");
}
else
{
MySerialPort.SendAsciiString("Zone is off\r\n");

// See if a command has been received.
string input = MySerialPort.ReadAsciiline();

COPYRIGHT © OZUNO HOLDINGS 2021 29

if (input.Length == 0)
{

return;

if (input == "on")

Zzones ["AI11"].0n () ;
}
else if (input == "off")
{
Zzones ["AI1l1"].0ff ();
}
else
{
MySerialPort.SendAsciiString ("Unknown command: " + input +
"\r\n");
}

COPYRIGHT © OZUNO HOLDINGS 2021 30

6.10 Other Properties and Methods

6.10.1 Date and Time
Date and Time properties include:

Property Name Type Settable | Description

Now DateTime | No The current date/time
IsDaylightSavingTime bool No Whether daylight saving is currently active
Sunrise DateTime | No The sunrise time today

Sunset DateTime | No The sunset time today

StartupTime DateTime | No The Date/Time that the Logic started running

RunTime TimeSpan | No How long the logic has been running

6.10.2 Connectivity
Connectivity properties include:

Property Name Type Settable | Description

EthernetConnected bool No Whether the Zone Controller Ethernet is
connected

RapixClientConnected bool No Whether a RAPIX client is connected to the
Zone Controller

ModbusConnected bool No Whether a Modbus server is connected to the
Zone Controller

6.10.3 Logic Module
Logic module methods include:

Method

Description

void DisableModule(string name)

Disable the logic module

void EnableModule(string name)

Enable the logic module

bool IsModuleEnabled(string name)

True if the module is enabled

Logic Module properties include:

Property Name Type

Settable

Description

IsFirstRun bool No

Whether this is the first time that the logic
module has run

6.10.4 Level Conversion

Method

Description

int LevelConvert.DaliLevelTolntPercent(int level)

Convert from DALI Level (0 — 254) to
percent (0 — 100)

double LevelConvert.DaliLevelToPercent(int level)

Convert from DALI Level (0 — 254) to
percent (0 — 100)

int LevelConvert.PercentToDaliLevel(double
percent)

Convert from percent (0 —100) to DALI
Level (0 —254)

COPYRIGHT © OZUNO HOLDINGS 2021

31

6.10.5 Other
Other methods include:

Method

Description

void LogMessage(string text)

Write an Information level message to the
Zone Controller log

If the logged message is longer than 250 characters, it will be truncated. Any double quote

characters will be changed to single quote characters.

6.11 Constants
The following constants are defined:

const bool OFF = false;
const bool ON = true;
const bool NO = false;
const bool YES = true;
const bool CLEAR = false;
const bool SET = true;

This allows for clarity in the code. For example, the following are all equivalent:

e 1if (FlagGroups["Sensors"]
e 1if (FlagGroups["Sensors"]
e 1if (FlagGroups["Sensors"]
e 1if (FlagGroups|["Sensors"]
e 1if (FlagGroups["Sensors"]
e 1if (FlagGroups|["Sensors"]

COPYRIGHT © OZUNO HOLDINGS 2021

.Flags
.Flags
.Flags
.Flags
.Flags
.Flags

32

"Office"].State)
"Office"].State == ON)
"Office"].State == YES)
"Office"].State == SET)
"Office"].State != CLEAR)
"Office"].IsSet)

7/ Best-Practices

7.1 Comments and naming
Put lots of comments in the code. They are invaluable if changes are required at a later date.

Use clear variable names. For example, a variable called "counter" is much better than one called

X

7.2 Module Period
Use the longest module period suitable for the application. If something needs to be performed
every few minutes, there is no need to have a period of % second — it just adds load to the processor.

7.3 Performing Actions on Changes
It is important to try to write Logic code that performs actions only when something changes.

For example, if you want the level of Zone 2 to track the level of Zone 1, the temptation is to have a
module run every 250ms that does this:

zones[2] .Level = Zones[1l].Level;

The problem with this is that it may result in commands being sent to DALI 4 times every second
setting the level of Zone 2. This could be very disruptive of the correct operation of the system.

The Zone Controller does anticipate this situation by only setting a Zone level if the requested level is
not the same as the current level. However, this is not fool-proof. For example, if you have a Zone
that only contains relays, then its level will be either 0% or 100%. If your Logic code sets the Zone
level to 50%, then the DALI commands will always be sent out to the DALI Lines.

The best way to ensure that actions are performed only when something changes is to test for the
change before performing the actions. For the example above, the code would be:

if (HasChanged (Zones[1l].Level))
{

zones[2] .Level = Zones[l].Level;

Alternatively, the "early return" coding style can be used:

if (!'HasChanged(Zones[1l].Level))
{

return;

}

Zzones[2] .Level = Zones[l].Level;

You can see that the code exits if the level of Zone 1 has not changed. The following code will only
be run when the level of Zone 1 changes.

COPYRIGHT © OZUNO HOLDINGS 2021 33

8 Debugging

Logic runs in the Master Zone Controller. The Master is usually the one with the lowest IP Address.

The Master can be seen on RAPIX Integrator with the M next to the link icon.

Network Q, Search

> Floor 1

> Floor2

3 3(%

> Floor3
» USE DALI Lines

"Floor 1" is the Master

Alternatively, the Zone Controller menu item 1.12.10 shows whether a Zone Controller is Master or
Slave.

If the logic does not appear to be running:

1. Find which Zone Controller is the Master.
2. Navigate to the menu item 1.12.12
3. The display should show "Running". If not, there will be a message with the reason why the
logic is not running. Logic will only run:
a. If the date and time has been set
b. When the DALI Line scan is complete

Using logging:

1. Use the logic LogMessage() method to log when the logic performs various actions.
Transfer the project to the Zone Controllers.

Open the RAPIX Integrator log form.

Select the filter option to show Logic Events and/or Logic User messages (the ones written
using the LogMessage method).

Pwn

Activity on DALI Line Export... Import...
A\ Filters | 1 filter enabled. Q, Search
[] Time From 14-01-2021 3:10:41 PM =
To 14-01-2021 4:10:41 PM =
Type | DALl Level DALI Other DALl Xi [[] eDALI |
| [] Metadata Comment Zone Kiene Logic Events Logic User |

5. Start the log running (make sure the Master Zone Controller is selected)
6. You will see logic messages in the log.

COPYRIGHT © OZUNO HOLDINGS 2021 34

9 Examples

9.1 ZoneToggle
To toggle the on/off state of a Zone called "Room 2":

zZzones["Room 2"].State = ! Zones["Room 2"].State;

9.2 Zone Level Adjustment
To increase the level of a Zone called "Room 2" by 10%:

Zzones["Room 2"].Level = Zones["Room 2"].Level + 10%;

To decrease the level of a Zone called "Room 2" by 10%:

zones ["Room 2"].Level = Zones["Room 2"].Level - 10%;

To decrease the level of a Zone called "Room 2" by 10%, but prevent it from turning off entirely:

if (Zones["Room 2"].IsOn)

{

int new level = Zones["Room 2"].Level - 10%;

// If the new level is > 0, then use the new level.
// Otherwise, use level 1.
if (new level > 0)
{
Zzones["Room 2"].Level
}
else
{

Zzones["Room 2"].Level

new level;

Il
'_\
~.

A more concise way to do the same thing is to use the C# ternary conditional operator:

if (Zones["Room 2"].IsOn)

{

int new level = Zones["Room 2"].Level - 10%;
// If the new level is > 0, then use the new level.

// Otherwise, use level 1.
zones["Room 2"].Level = new_level > 0 ? new_level : 1;

COPYRIGHT © OZUNO HOLDINGS 2021 35

9.3 Zone Tracking
To get the state of one zone ("Room 2") to track the state of another zone ("Room 1"):

if (Zones["Room 2"].State != Zones["Room 1"].State)

{

Zzones["Room 2"].State = Zones["Room 1"].State;

9.4 Conditional Zone Tracking
To get the level of one zone to track the other if a flag is set:

if (FlagGroups["Room Divider"].Flags["Room 1 and 2"].State &&

Zones ["Room 2"].Level != Zones["Room 1"].Level)
{
zZzones["Room 2"].Level = Zones["Room 1"].Level;
}
9.5 Logical OR

To have Zone 3 on if Zone 1 OR Zone 2 is on:

Zones[3].State = Zones[l].State || Zones[2].State;

9.6 Logical AND
To have Zone 3 on if Zone 1 AND Zone 2 is on:

Zzones[3].State = Zones[l].State && Zones[2].State;

9.7 Logical NOT
To have Zone 2 the opposite state of Zone 1:

Zzones[l].State = !Zones[1l].State;

COPYRIGHT © OZUNO HOLDINGS 2021 36

9.8 Adjacent Area Control
To keep a corridor on when an adjacent office is occupied:

Global code:

int OccupancyCounter = 0;

Module:

// Check whether the corridor needs to be turned on.
if (Zones["Office"].IsOccupied && Zones|["Corridor"].IsAnyOff)
{

Zones["Corridor"].0n () ;

OccupancyCounter = 300;

~

// Check whether the corridor needs to be turned off.
if (!Zones["Office"].IsOccupied && Zones["Corridor"].IsAnyOn
&& OccupancyCounter > 0)
{
OccupancyCounter—--;
if (OccupancyCounter == 0)
{

Zones ["Corridor"].0ff (),

COPYRIGHT © OZUNO HOLDINGS 2021 37

9.9 Initialisation
There are several ways of initialising aspects of the logic.

9.9.1 Global Declaration
Variables can be initialised in the global code. For example:

int MyCounter = 0;
RapixTimer EventTimer = new RapixTimer () ;

9.9.2 Run Once Module
A module can be used to do initialisation. The best way to do this is:

1. Name it clearly (e.g. "Initialisation" or "Startup")
2. Make sure it runs before all other modules (set its Delay after logic starts to 0, and all other

modules to 1 second)
3. Setittorun once only

Properties

MName: |Startup |

Include [] Catch-up on Power-up

|Run once Delay after logic starts:

Script

1 // Initialise everything.
2 myTcpClient = new TcpClient();
3

9.9.3 Using IsFirstRun
The IsFirstRun property will be true only the first time that the logic runs. That allows you to put
initialisation code at the start of the module. For example:

if (IsFirstRun)
{

// Initialise everything.
myTcpClient = new TcpClient();

COPYRIGHT © OZUNO HOLDINGS 2021 38

9.10 Using Date and Time

9.10.1 Time of Day
To perform an action at 7:30PM, the code will be:

if (NowTrue (Now.TimeOfDay >= new TimeSpan (19, 30, 0)))
{

// Perform action

Do not write the code like this:

if (Now.TimeOfDay == new TimeSpan (19, 30, 0))
{

// Action might get missed, or executed multiple times!!!

In this case, the action may get missed if the logic module does not get executed at exactly 7:30 PM.
It could also get run more than once if the logic module is executed multiple times within the second
at 7:30:00 PM

The NowTrue method in the example code ensures that the action is performed exactly once when
the time changes from before 7:30PM to 7:30PM or after.

9.10.2 Day of Week
To execute some logic only on Saturdays:

if (Now.DayOfWeek == DayOfWeek.Saturday)

{
// Put logic code here

}
9.10.3 Day of Year
To execute an action on 25 December every year at 6AM:

if (NowTrue (Now.Day == 25 && Now.Month == 12 && Now.Hour ==
6))
{

// Perform action

}
Note that the NowTrue function is used in this instance because the Now.Hour will equal 6 for a
whole hour and the module could be executed thousands of times during that interval, but we only
want the action to be performed once.

9.10.4 Sunrise/sunset
To perform an action an hour after sunrise:

if (NowTrue (Now > Sunrise.AddHours (l)))

{

// Perform action

COPYRIGHT © OZUNO HOLDINGS 2021 39

9.11 Enabling / Disabling Logic Modules

9.11.1 Excluded Modules
Individual Logic modules can be permanently disabled by de-selecting the "included" option:

Properties

MName: |Jccupancy
[] Include | [] Catch-up on Power-up

Run periodically Delay after logic starts:

9.11.2 Enable / Disable methods
The EnableModule and DisableModule methods can be used to dynamically enable and disable
modules. A module is also able to disable itself using DisableModule.

For example, a module could be used to enable another module based on the state of an Xi
Operating property. In the example below, the "Occupancy" module is to be enabled only during
non-peak hours:

if (OpProps["Building Mode"].IsValue ("Non-peak hours"))

{

DisableModule ("Occupancy") ;
}
else
{

EnableModule ("Occupancy") ;
}

9.11.3 Conditional Operation
The simplest method of disabling a module under certain conditions is to just include the condition
as part of the module code.

For example, we may want to perform an action only if an Xi Flag is set:

if (FlagGroups["Sensor enable"].Flags["Floor 1"].IsSet)
{

// Perform action

An alternative way of writing this is the "early return" coding style where the opposite condition
(flag is clear in this case) is used to exit the module at the start:

if (FlagGroups["Sensor enable"].Flags["Floor 1"].IsClear)
{

return;

// Perform action

COPYRIGHT © OZUNO HOLDINGS 2021 40

There are some advantages to using the early return style. It separates the condition from the rest of
the module code.

It also allows the use of delays in the rest of the module code. For example, this is valid:

if (FlagGroups["Sensor enable"].Flags["Floor 1"].IsClear)
{

return;

// Perform action 1

Delay (2);
// Perform action 2

This will not work because the delay is inside the code block:

if (FlagGroups|["Sensor enable"].Flags["Floor 1"].IsSet)
{

// Perform action 1

Delay (2);
// Perform action 2

COPYRIGHT © OZUNO HOLDINGS 2021 41

9.12 Sequence of Events
This example uses a Zone being turned on to trigger a sequence of scenes with delays between
them:

if (!NowTrue (Zones[1l].IsOn))
{
// No trigger yet, so exit.
return;

Scenes[1l].Set ()
Delay (2);
Scenes([2].Set ()
Delay (2);
Scenes[3].Set ()

Note that you cannot write the code like this because delays are not allowed inside a block:

if (NowTrue (Zones[1l].IsOn))
{
// *** This will not work ***
Scenes[1l].Set();
Delay (2);
Scenes[2].Set ();
Delay (2);
Scenes[3].Set ();

Another way to achieve this is to have one module used for running the sequence and have it start
disabled (select the "Don't run automatically" option). Then use another module to enable the
sequence.

Module 1 ("Trigger"):

if (NowTrue (Zones[1l].IsOn))
{

EnableModule ("Sequence") ;

Module 2 ("Sequence") — initially disabled:

Scenes([1l].Set (),
Delay (2);
Scenes[2] .Set ();
Delay (2);
Scenes[3].Set () ;

COPYRIGHT © OZUNO HOLDINGS 2021 42

If there is a long sequence of actions, it is tempting to write a "for" loop to iterate over all of them.
However, delays cannot be used inside loops. To run a sequence of 20 scenes, it could be done like
this:

Global code:

int SceneNumber = 0;

Module 1 ("Trigger"):

if (NowTrue (Zones[1l].IsOn))
{

EnableModule ("Sequence") ;
SceneNumber = 0;

Module 2 ("Sequence") — initially disabled:

SceneNumber++;

if (SceneNumber > 20)

{
// Finished
DisableModule ("Sequence") ;
return;

Scenes [SceneNumber] .Set () ;
Delay (2);

If the scenes do not have consecutive id numbers, then they can be indexed by name. The example
above is the same, except with a small change to the "Sequence" module:

SceneNumber++;
if (SceneNumber > 20)
{
// Finished
DisableModule ("Sequence") ;

return;
}
string SceneName = "Scene Sequence " + SceneNumber;
Scenes [SceneName] .Set () ;
Delay (2);

COPYRIGHT © OZUNO HOLDINGS 2021 43

9.13 Handling Error Conditions

If the Ethernet connection to the Zone Controller stops working, it will not be possible for a building
management system (BMS) to control the RAPIX system through the Zone Controller. It may be
desirable to turn all lights on in this satiation. The logic code to do this could be:

// If the Ethernet is disconnected for 10 seconds, then turn
on all DALI Lines.
if (StayedFalse (EthernetConnected, 10))

{
Zones["All Lines"].0n{();

If there is a failure with the BMS itself, then the above code will not work, since the Ethernet would
remain connected. A more robust solution would be for the BMS to send a "heart-beat" of some sort
and have the logic detect if it has stopped.

One way to do this is to have the BMS toggle the state of a virtual zone on a regular basis, say every
minute. If the logic observes the virtual zone staying off or on for more than a minute, then it can
turn on the lights. One simple way to solve this is using code similar to the example above. Another
is to use timers:

In global code:

RapixTimer MyTimer = new RapixTimer ()

In module:

// Detect if the "heart-beat" from the BMS has stopped.

// If the timer is not running, then start it.
if (!MyTimer.Running)
{

MyTimer.Start () ;

// If the Zone changes state, then re-start the timer.
if (HasChanged(Zones["Virtual Zone"].State))

{
MyTimer.Start () ;

// If the timer gets to 90 seconds then the "heart-beat" has
stopped and the lights need to be turned on.
// We only want to do this once, when the timer first gets to
90 seconds.
if (NowTrue (MyTimer.Time > 90))
{
LogMessage ("BMS heart-beat has failed. Turning lights on.");
Zones["All Lights"].0n();

COPYRIGHT © OZUNO HOLDINGS 2021 44

